Pour éditer le wiki, il faut demander un compte à un Lapin !

Difference between revisions of "LedFloor"

From Le L∞p's Wiki
Jump to: navigation, search
(Solution #5)
(Solution #4)
Line 51: Line 51:
  
 
looking at the peggyLE schematics, they are not using several of the outputs, it looks like a 32x30 grid is possible with the IC's included, and by adding another IC in place of the buttons 32x45 is possible.  --cw
 
looking at the peggyLE schematics, they are not using several of the outputs, it looks like a 32x30 grid is possible with the IC's included, and by adding another IC in place of the buttons 32x45 is possible.  --cw
 +
=> they use two 4 to 16 demux for highside driving. They therefore *have* to keep one output not connected, to allow an "off" state for each of these chips. One solution would be to use two such chips, plus two generic I/O, leading to a (quite ugly) 10 to 32 demux functionality. -- cq
  
 
== Solution #5 ==
 
== Solution #5 ==

Revision as of 23:44, 3 February 2011

Led Floor

How to turn the 11 windows of the hacklab into a big led display ?

  • what have we got to do it ?
    • Windows that are H189xW95.5 centimeters
    • 1000 red leds
    • loads of RJ45 and old IDE/SCSI/floppy buses
  • what we need ?
    • a system to control each diode (or group of diodes) independantly
    • that is not too expensive

Question: do we need on/off for each led, or more advanced modes (eg PWM for various intensities).

  • on/off:
    • is simpler as regard to schematics
    • is simpler as regard to driving code (led bits per image, obviously)
    • isn't as cool
    • can still, to some extend, allow some variable intensities

PWM "natural" ability is prefered, but choice will be made depending on total cost of solution.

Solution #1

use a TLC5940NT that can control about 16 LED each

Naturally leads to a PWM version

Solution #2

use the snootlab's i2c led driver solution that can control 16 LED each

  • 64*i2c led driver = 9.95*64 = 636.80
  • 1*i2c shield = 17.95
  • 1 ardunio = 20
  • O(price) = 674.75 euros

Solution #3

  • use shift registers... ?

Solution #4

use two Peggy 2 board :

  • 2* http://evilmadscience.com/tinykitlist/157
  • O(price) = 95*2 = $180 --or far less as you won't need the giant PCB. They have a "parts kit" that includes the 328 and the IC's for $15. you'd still need LED's and transistors and other support components. --cw

looking at the peggyLE schematics, they are not using several of the outputs, it looks like a 32x30 grid is possible with the IC's included, and by adding another IC in place of the buttons 32x45 is possible. --cw => they use two 4 to 16 demux for highside driving. They therefore *have* to keep one output not connected, to allow an "off" state for each of these chips. One solution would be to use two such chips, plus two generic I/O, leading to a (quite ugly) 10 to 32 demux functionality. -- cq

Solution #5

  • Check with Electrolab, where another similar project is ongoing :-)

=> actually, the (current) project there is about a 8x8x8 led cube. Which is a bit different.

Solution #6

  • 42 ?